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A Closed-Form Solution for the Distribution of the
Sum of Nakagami-m Random Phase Vectors

George K. Karagiannidis, Senior Member, IEEE

Abstract— The distribution of the modulus of the sum of
random phase vectors, is of great practical importance in several
applications which deal with sums of sinusoidal signals (wireless
multipath transmissions, radars, optical communications, etc). In
this letter, simple closed-form expressions are presented for the
probability density function (PDF), the cumulative distribution
function (CDF), the moment generating function (MGF) and
the moments of the envelope distribution of the sum of L non-
identical random Nakagami-m phase vectors with integer fading
parameters. Moreover, the average over this distribution of the
Gaussian Q-function and of the squared Q-function, are also
presented in closed-form.

Index Terms— Nakagami-m fading channels, sum of random
phase vectors, selective fading, Gaussian Q-function, OFDM,
coherent modulation.

I. INTRODUCTION

THE statistics of the sum of several random sinusoidal
signals -which can be considered as sums of random

vectors (RVs) and is usually referred in the literature as the
random vector problem- is encountered in several applications,
including communications over multipath fading channels,
radars, light scattering, etc.

Recent publications related to the problem of RVs include
[1] and [2]. In the pioneering work of Abdi et. al. [1], a general
approach was presented for the evaluation of the probability
density function (PDF) of the sum of an arbitrary number of
RVs with arbitrary statistics. Moreover, this paper includes a
complete literature review, concerning this problem. Recently,
Du et. al. [2], proved a result for the PDF of the sum of
Nakagami-m RVs, which was stated without proof many years
ago by Nakagami in [3] and is a special case of [1]. Moreover,
in the same work it was shown that a further approximation
made by Nakagami, although it is a useful tool for rapid
analysis, can however be inaccurate. Next, a Nakagami-m
phase vector is considered to have its modulus following
Nakagami-m distribution [3], while its phase is uniformly
distributed.

In this letter, closed-form expressions, in terms of ele-
mentary functions, are derived for the PDF, the cumulative
distribution function (CDF), the moment generating function
(MGF) and the moments of the envelope distribution of a sum
of L non-identical Nakagami-m random phase vectors with
integer fading parameters. Moreover, closed-form formulae are
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derived for the average over this distribution of the Gaussian
Q-function and of the squared Q-function, which can be
efficiently used to evaluate the error performance of several
coherent modulations over frequency-selective Nakagami-m
fading channels.

II. THE DISTRIBUTION OF THE MODULUS OF THE SUM OF

L NAKAGAMI-m RANDOM PHASE VECTORS

Consider L phase vectors, hi, i = 1, ..., L, with amplitudes
(modulus) |hi| and phases φi, where |hi| follows Nakagami-m
distribution with PDF [3]

f|hi|(r) =
2mmi

i

Ωmi
i Γ (mi)

r2 mi−1 exp
(
−mi

Ωi
r2

)
(1)

where Γ (x) is the Gamma function [4, (8.310/1)], Ωi =
E

〈
|hi|2

〉
, mi = Ω2

i /E
〈
(|hi|2 − Ω)2

〉
≥ 1/2, and E 〈·〉

denotes expectation. The PDF in (1) includes the cases of
Rayleigh (m = 1) and one-sided Gaussian (m = 1/2)
distributions as special ones. Furthermore, it is assumed that
the phases φis are mutually independent and independent of
the amplitudes |hi|s, as it is satisfied in the most practical cases
[1]. The problem is to obtain the distribution of the amplitude
of the vector

H =
L∑

i=1

|hi| ejφi . (2)

In [3], Nakagami stated without proof that a solution to this
problem is the integral representation

f|H| (r) = r

∞∫
0

L∏
i=1

1F1

(
mi; 1;− Ωi

4mi
x2

)
J0 (rx) x dx (3)

with 1F1 (a; b; z) being the confluent hypergeometric function
and J0 (z) the zeroth-order Bessel function [4]. A proof to (3)
only recently was given in [2].

Although the integral representation in (3) -as it was shown
by simulations in [2]- is exact, a numerical evaluation of this
formula seems to be difficult for L ≥ 3, since the product
L∏

i=1
1F1

(
mi; 1;− Ωi

4mi
x2

)
rapidly decreases with an increase

of Ωi

4mi
x2 and the multiplication of several small numbers

could lead to inaccurate results, when numerical integration is
performed. The difficulty to evaluate numerically the integral
in (3) can be also verified when using MATHEMATICA
software with L = 4, mi = m = 3, Ωi = Ω = 15 dB
and r = 5. In this case, the CPU time needed is 125 sec,
with the program being unable to check the accuracy of the
convergence.
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Next, simple closed-form expressions for the PDF, the CDF
and the MGF of |H| are presented, when mi takes integer
values. We first define the operator G 〈.〉 as

G 〈X〉 ∆=
m1−1∑
i1=0

· · ·
mL−1∑
iL=0

SL∑
j=0

L∏
k=1

(
(1−mk)ik

(ik!)2

)
(−SL)j SL!YL X

(j!)2 USL

L

(4)
where X is a mathematical expression and G 〈X〉 means
replacement of the X in the second part of (4) with this

expression. Moreover, SL =
L∑

k=1

ik, YL =
L∏

k=1

(
Ωk

4mk

)ik

,

UL =
L∑

k=1

Ωk

4mk
and (z)n is the Pochhammer symbol [5,

(6.1.22)] with (−z)n = (−1)n (z − n + 1)n. Note, that G 〈X〉
has useful properties such as

b∫
a

G 〈X〉 dx =G
〈 b∫

a

X dx

〉
(5)

which will be used below.

A. PDF

Using (5) and [4, (8.972.1) and (8.970.1)] the PDF of |H|
can be written as

f|H| (r) =
m1−1∑
i1=0

· · ·
mL−1∑
iL=0

L∏
k=1

(
(1 − mk)ik

(ik!)2

)
r

×
∞∫
0

e−ULx2
x2SL+1J0 (xr) dx.

(6)

The integral in (6) can be solved in closed-form using [4,
(6.631.1)], yielding to

f|H| (r) =
m1−1∑
i1=0

· · ·
mL−1∑
iL=0

L∏
k=1

(
(1 − mk)ik

(ik!)2

)
r

×
(

Γ (SL + 1)
2USL+1

L

1F1

(
SL + 1; 1;− r2

4UL

))
.

(7)

After the replacement of the confluent hypergeometric func-
tions with their finite series representations [4, (8.972.1) and
(8.970.1)], f|H|(r) can be finally written as a finite sum of
elementary functions

f|H| (r) = G
〈

e
− r2

4UL r2j+1

U j+1
L 22j+1

〉
(8)

which is in fact a sum of weighted Nakagami-m PDFs.

B. CDF

The CDF of |H| is defined as

F|H| (R) =

R∫
0

f|H| (r) dr (9)

or
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〈

j!

(
1 − e
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22nUn
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where in (10), [5, (3.381.1)] is used to solve the integral and
[4, (8.352.2)] to replace the incomplete Gamma function [4,
(8.350.2)], Γ (x, y), with its finite series representation.

C. MGF

The MGF of |H| is defined as

M|H| (s) =

∞∫
0

esrf|H| (r) dr (11)

or using [4, (3.462.1) and (9.240)]
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(12)

The above expression for the MGF of |H| can be efficiently
utilize the well-known MGF approach [6], to evaluate the error
performance of orthogonal frequency-division multiplexing
(OFDM) communications in Nakagami-m frequency selective
fading channels [2].

D. Moments

The N th moment of |H| can be written as

µN =

∞∫
0

G
〈

e
− r2

4UL r2j+1+N

U j+1
L 22j+1

〉
dr

= G
〈

1
U j+1

L 22j+1
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0

e
− r2

4UL r2j+1+Ndr

〉

= G
〈

2NU
N
2

L Γ
(

N

2
+ j + 1

)〉
(13)

where [5, (3.381.3)] is used to solve the integral in (13). The
most important first (mean) and second (variance) moment,
can be easily computed from (13), using N = 1 and N = 2,
respectively.
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III. THE AVERAGE OVER |H| OF THE

GAUSSIAN Q-FUNCTION

When characterizing the performance of coherent digital
communications, the generic form of the expression for the
error probability involves the Gaussian Q-function (or for
quadrature amplitude modulation (QAM) the square of the
Gaussian Q-function) with an argument proportional to the
instantaneous signal-to-noise ratio (SNR) of the received sig-
nal. To compute the average error probability in theses cases,
one must evaluate the average over the fading PDF of the
Q-function or the squared Q-function [6].

A. The average of Q (Ar)
The average over |H| of the Gaussian Q-function is by

definition

E 〈Q (Ar)〉 =

∞∫
0

Q (Ar) f|R| (r) dr (14)

where A is a factor related to SNR. With the help of (4), (14)
can be written as

E 〈Q (Ar)〉 =

∞∫
0

G
〈

e
− r2

4UL r2j+1

U j+1
L 22j+1

Q (Ar)

〉
dr

= G
〈

1
U j+1

L 22j+1

∞∫
0

e
− r2

4UL r2j+1Q (Ar) dr

〉
.

(15)

Fortunately, the integral in (15) is encountered in the average
over Nakagami-m fading channels of the Q-function, and can
be solved in terms of elementary functions using [6, (5.17)],
finally resulting in

E 〈Q (Ar)〉 = G
〈

j!
2
− j! s

2

j∑
n=0

(
2n
n

) (
1 − s2

4

)n
〉
(16)

where c = 2A2UL and s =
√

c
1+c . Note, that for the case of

arbitrary values of mi, a solution for E 〈Q (Ar)〉 was given in
[2], in terms of the Lauricella function.

B. The average of Q2 (Ar)
Following the same procedure as below, the average over

|H| of the squared Gaussian Q-function can be written as

E 〈Q (Ar)〉 = G
〈

1
U j+1

L 22j+1
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0

e
− r2

4UL r2j+1Q2 (Ar) dr

〉

(17)

where the integral in (17) is also encountered in the average
over Nakagami-m fading channels of the squared of Q-
function and can be also evaluated in closed-form using [6,
(5.30)].

Finally (17) yields
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=
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2
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⎞
⎟⎟⎠

〉
.

(18)

IV. DISCUSSION

a) The simple closed-form expressions, presented above,
can be efficiently used to study the error performance of
several digital modulations (including square QAM), in the
case where the fading environment can be modelled as a sum
of not necessarily identical random Nakagami-m phase vectors
(e.g. OFDM in frequency-selective fading channels [2]).

b) Due to the form of the operator G 〈.〉, the approach
presented in this letter can be easily extended to the case where
diversity is used at the receiver (e.g maximal ratio combining
(MRC) or selection combining (SC)).

c) Following the same procedure, closed-form expressions
can be also derived for other important utilities, as the average
of the log(1 + r2) over |H|, which is related to the average
Shannon capacity.
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