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Abstract— We propose an alternative simpler implementation
of generalized switch and stay combining (GSSC) receiver,
which utilizes only one switching circuit and includes the classic
dual SSC as a special case. Its performance is evaluated over
Nakagami-m fading channels leading in closed-form expressions
for the average symbol error probability. Moreover, for the case
of non identical branches, the optimum threshold is accurately
approximated in closed-form, avoiding the use of complicated
numerical methods.

Index Terms— Diversity techniques, fading channels, switch
and stay combining (SSC).

I. INTRODUCTION

IT is well known that the classic dual switch and stay com-
bining (SSC) [1]-[3] is less complex than maximal ratio

combining (MRC), equal gain combining (EGC) or selection
combining (SC) [4], since the number of the branches that
have to be monitored is reduced. Nevertheless, in the emerging
wireless communication systems operating in diversity-rich
environments, i.e., with a large number of diversity paths,
the combining of more branches is necessary and therefore
SC or SSC may be insufficient techniques. Ko et al in
[5] introduced the generalized switch and stay combining
(GSSC), in order to take advantage of more than two diversity
branches, while keeping the complexity lower than the one in
MRC or generalized selection combining (GSC). However,
the number of the required switching circuits is the same
with the combined branches, resulting in transient phenomena
and synchronization problems at the combination stage [6].
Moreover, for the case of independent but non identically
distributed (i.n.i.d) branches, no method has been proposed
for determining which branches must be involved at each
switching circuit.

In this paper, we propose an alternative simpler implemen-
tation of a SSC scheme with more than two diversity branches,
which utilizes only one switching circuit and includes the
classic dual SSC as a special case. The error performance
of the proposed system is evaluated over Nakagami-m fading
channels assuming both independently identically distributed
(i.i.d) and i.n.i.d branches, leading in closed-form formulas

Manuscript received December 21, 2006. The associate editor coordinating
the review of this letter and approving it for publication was Prof. Gianluca
Mazzini.This research has been supported in part by the General Secretariat
for Research and Technology (GSRT) of the Hellenic Ministry of Develop-
ment under a grant for the Bilateral S&T Cooperation between the Hellenic
Republic and Canada.

A. S. Lioumpas and G. K. Karagiannidis are with the Electrical and
Computer Engineering Department, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece (e-mail: {alioumpa, geokarag}@auth.gr).

A. P. Doukeli is with the Electrical and Computer Engineering
Department, National Technical University of Athens, Greece (e-mail:
doukeli@mail.ntua.gr).

Digital Object Identifier 10.1109/LCOMM.2007.062084.

for the average symbol error probability (ASEP). Moreover,
for the case of i.n.i.d branches, the optimum thresholds are
accurately approximated by closed-form formulas, avoiding
complicated numerical methods that may result in non prac-
tical system’s implementations.

II. SYSTEM MODEL AND MODE OF OPERATION

Consider a multichannel diversity reception system with 2L
branches operating over flat fading channels where the receiver
employs symbol-by-symbol detection.

The mode of operation of the proposed receiver is as
follows:

1) The 2L branches are separated into two groups, each
involving L branches. The receiver first estimates the
output SNR of the first group (e.g. γA = γ1 + γ2 +
. . . + γL, where γk denotes the SNR of the kth branch)
and compares it with a predetermined threshold γTh.

2) If the current group is acceptable (i.e. γA > γTh),
the receiver combines the branches of this group using
MRC. Otherwise, the receiver estimates the branches of
the other group and combines them using MRC.

3) In the next time interval the receiver estimates the output
SNR of the second group and the same procedure is
followed.

We have to mention here that the receiver employs one
combiner.

III. PERFORMANCE OVER NAKAGAMI-m FADING

A. Output Statistics

Assuming that the SNR at the kth diversity branch is a
Gamma distributed random variable (RV) with mean value γk

and scale parameter mk, then the probability density function
(pdf) of the proposed receiver’s output SNR is given by [7]

fz(z) =

⎧⎪⎪⎨
⎪⎪⎩

A(γTh)Fz1(γTh)fz2(z)
+(1 − A(γTh))Fz2(γTh)fz1(z), z < γTh

A(γTh) (fz1(z) + Fz1(γTh)fz2(z)) + (1 − A(γTh))
× (fz2(z) + Fz2(γTh)fz1(z)) , z ≥ γTh

(1)
where fzn

(·), Fzn
(·) are the pdf and cumulative density

function (cdf) of the combined SNR of the nth group (n =
{1, 2}) respectively and

A(z) = Fz2(z)/(Fz2(z) + Fz1(z)). (3)

The cdf of the receiver’s output SNR is given by [7]

Fz(z) =

⎧⎨
⎩

A(γTh)Fz1(γTh) (Fz1(z) + Fz2(z)) , z < γTh

A(γTh) (Fz1(z) + Fz2(z) − 2)
+A(γTh)Fz1(z) + (1 − A(γTh))Fz2(z), z ≥ γTh

(4)
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Pe =
bΞ
2

A(γTh)Fz1(γTh)(I (k,
√

aγTh, ηi) − I(k, 0, η)) +
bΞ
2

(1 − A(γTh))Fz2(γTh) (I (k,
√

aγTh, ηi) − I (k, 0, ηi))

− bΞ
2

(A(γTh) + (1 − A(γTh))Fz2(γTh)) I(k,
√

aγTh, ηi) − bΞ
2

(1 − A(γTh) + A(γTh)Fz1(γTh)) I(k,
√

aγTh, ηi) (2)

For convenience, the fading parameters and the average SNRs
of the branches of the nth group are denoted as

{
mn

q

}L

q=1

and
{
γn

q

}L

q=1
respectively. Moreover, fzn

(z) and Fzn
(z) are

given by [8]

fzn
(z) =

L∑
i=0

mn
i∑

k=0

ΞL

(
i, k,

{
mn

q

}L

q=1
,
{
ηn

q

}L

q=1
, {lq}L−2

q=1

)
× fYi

(z; k; ηn
i )

and

Fzn
(z) =

L∑
i=0

mn
i∑

k=0

ΞL

(
i, k,

{
mn

q

}L

q=1
,
{
ηn

q

}L

q=1
, {lq}L−2

q=1

)
× FYi

(z; k; ηn
i )

where

fYi
(z;mn

i ; ηn
i ) =

zmn
i −1

ηn
i (mn

i − 1)!
exp

(
− z

ηn
i

)

and

FYi
(z;mn

i ; ηn
i ) = 1 − Γ (mn

i , z/ηn
i )

(mn
i − 1)!

are the pdf and the cdf of the SNR at the ith branch of the
nth group respectively, ηn

i = γn
i

mn
i

, ΞL is given by [8, Eq. 7]

and RL =
L∑

i=0

mn
i .

B. Average Symbol Error Probability

It is well known, that for several signaling constellations,
the ASEP can be written as follows [9]

Pe = b

∞∫
0

Q(
√

2aγ)fγ(γ)dγ (5)

where Q(·) is the Gaussian Q-function, which has a one-
to-one mapping with the complementary error function [i.e.,
Q(x) = 0.5 erfc(x/

√
2)] commonly found in standard math-

ematical tabulations and fγ(γ) is the pdf of the SNR per
symbol γ. For binary phase-shift keying (BPSK) a = b = 1
and for M -ary pulse amplitude modulation (M -PAM) a =
3/(M2 − 1), b = 2(1 − 1/M). Moreover, for high values
of average input SNR and M -PSK, a =sin2 (π/2M), b = 2,
while for M -ary quadrature amplitude modulation (M -QAM),
a = 3/2(M2−1), b = 4(1−1/

√
M). Replacing (1) in (5) and

after manipulations the ASEP can be expressed in closed-form

as (2) (see the top of the page), where

I (x, y, z) =
∫

Erfc(
√

ay)yx−1exp(−y

z
)dy =

= −Erfc[y]
(z)−x Γ

(
x,

y2

az

)
+

(x − 1)!
(z)−x √

π

×
x−1∑
p=0

(
1 + 1

az

)− 1
2−p (az)−p Γ

(
1
2 + p, y2(1+az)

az

)
p!

(6)

and

Ξ =
L∑

i=0

mi∑
k=0

ΞL

(
i, k, {mq}L

q=1 , {ηq}L
q=1 , {lq}L−2

q=1

)
.

Γ(·) is the gamma function [10, (8.31)] and Γ(·, ·) is the
incomplete gamma function [10, (8.35)]. The integral in (6),
can be solved by applying integration by parts and using
[10, (8.35), (2.326)]. At this point it should be noted that for
the case of i.n.i.d branches with the same fading parameters,
the maximum performance is achieved when the first group
involves the L ”strongest” branches and the second group
the L ”weakest” branches. The term strong is referred to the
branches with greater average power. This observation was
extracted through extensive simulations, but it’s proof seems
to be difficult and is out of the scope of this letter.

For the case of i.i.d branches (i.e. γk = γ and mk = m)
the expression for the ASEP is reduced to

Pe = − b

2

(
1 − Γ

(
mT ,

γThmT

γT

)
/Γ (mT )

)

× I

(
mT , 0,

γT

mT

)
− b

2
I

(
mT ,

√
aγTh,

γT

mT

)
(7)

where mT =
∑L

k=1 mk and γT =
∑L

k=1 γk.

C. Optimum Threshold

The optimum threshold is an additional important system
design issue for SSC systems and affects the system error
performance. This optimal value γ∗

Th is the solution of the
equation dPe/dγTh = 0 [4], and can be obtained using
numerical minimization methods. However it could increase
the receiver’s complexity and therefore extinguish its benefits
compared to other diversity techniques such as MRC or GSC.
Thus, closed-form expressions that approximate the optimum
threshold would significantly decrease the receiver’s complex-
ity at the cost of minimal or null performance degradation,
since the performance is not affected by a small declination
of the calculated threshold from the optimum one. Following a
similar procedure as in [5], an approximation of the optimum



LIOUMPAS et al.: ANOTHER LOOK AT MULTIBRANCH SWITCHED DIVERSITY SYSTEMS 327

Fig. 1. The ASEP of the new scheme compared to GSSC, MRC and GSC,
over i.i.d Nakagami-m fading with L=4.

threshold for BPSK and M -PAM modulation and Nakagami-
m fading, can be expressed as

γ∗
Th =

1
a

L∑
i=1

Q−1

⎛
⎜⎝ 1

2L

√
aγi

πm

2
(
1 + aγi

m

)m+ 1
2

Γ
(
m + 1

2

)
Γ (m + 1)

×2F1

(
1,m +

1
2
;m + 1;

1

1 + aγi

m

)2
⎞
⎠ , (8)

where 2F1 (·, ·; ·; ·) is the Gauss Hypergeometric function and
Q−1 is the inverse Gaussian Q function. For the case of
i.i.d branches and M -PAM an approximated threshold can be
expressed as

γ∗
Th =

1
2a

Q−1

⎛
⎜⎝

√
aγT

πmT

2
(
1 + aγT

mT

)mT + 1
2

Γ
(
mT + 1

2

)
Γ (mT + 1)

× 2F1

(
1,mT +

1
2
;mT + 1;

1

1 + aγT

mT

)2
⎞
⎠ (9)

which for a = 1 results to the exact threshold for BPSK. Note,
that the proposed receiver includes the classic dual SSC as a
special case when L=1 and therefore, the performance analysis
presented above can be also applied in SSC receivers. To the
best of the authors’ knowledge, the ASEP of SSC receivers
has not been given in a closed-form for the case of i.n.i.d
Nakagami-m fading channels.

In Fig. 1 we compare the ASEP of the new proposed scheme
to that of GSSC, MRC and GSC assuming BPSK modulation.
It is observed that the performance loss of the new scheme
is about 0.5 dB compared to GSSC for two different fading
scenarios. Similar results are obtained from Fig. 2, where six
available branches are assumed. Specifically, for m = 1, the
new scheme suffers 1 dB loss in performance, while for m = 3
only 0.5 dB. However, the new receiver utilizes always one
switching circuit, while the number of switching circuits in
GSSC equals the number of the combined branches. For the

Fig. 2. The ASEP of the new scheme compared to GSSC, MRC and GSC,
over i.i.d Nakagami-m with L=6.

case of i.n.i.d fading, a comparison with the GSSC could not
be done, since no method has been proposed for determining
which branches must be involved at each switching circuit.
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